Bit Manipulation Cheat Sheet

Notel: "REGX" is not an actual Atmel register, rather "REGX" could be any register, ex. DDRB, PORTC, etc.
Note2: There is nothing special about changing bits 3, 5, or 7, those are simply used as examples here, these numbers

could be replaced with any bit in the register

Setting / Clearing / Toggling

REGX |= (1 << 3); // set 3rd bit

REGX |= (1 << 3) | (1 << 5); // set 3rd and 5th bits
REGX &= ~(1 << 3); // clear 3rd bit

REGX &= ~((1 << 3) | (1 << 5)); // clear 3rd and 5th bits
REGX "= (1 << 3); // toggle 3rd bit

REGX "= ((1 << 3) | (1 << 5)); // toggle 3rd and 5th bits

// if desired, macros can be used in place of the above, as follows:
#define SET BIT(byte, bit) (byte |= (1 << bit))

#define CLEAR_BIT(byte, bit) (byte &= ~(1 << bit))

#define TOGGLE _BIT(byte, bit) (byte ~= (1 << bit))

// after using the above macros, we could then do .

SET_BIT(REGX, 3); // set 3rd bit
CLEAR_BIT(REGX, 3); // clear 3rd bit
TOGGLE_BIT(REGX, 3); // toggle 3rd bit
Conditionals

if(REGX & (1 << 3)) { // if REGX bit 3 is set .
if('(REGX & (1 << 7))) { // if REGX bit 7 is clear .

// if REGX bits 3 and 5 are set and REGX bit 7 is clear .
if((REGX & (1 << 3)) && (REGX & (1 << 5)) && !I(REGX & (1 << 7))) {

// if desired, macros can be used in place of the above, as follows:
#tdefine BIT_IS SET(byte, bit) (byte & (1 << bit))
#define BIT_IS_CLEAR(byte, bit) (!(byte & (1 << bit)))

// after using the above macros, we could then do .
if (BIT_IS_SET(REGX, 3)) { // if REGX bit 3 is set .
if (BIT_IS_CLEAR(REGX, 7)) { // if REGX bit 7 is clear .

// if REGX bits 3 and 5 are set and REGX bit 7 is clear .
if (BIT_IS_SET(REGX, 3) && BIT_IS SET(REGX, 5) & BIT_IS_CLEAR(REGX, 7)) {

